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Randomly forced Rayleigh-B6nard convection 

By BHARAT JHAVERI A N D  G . M . H O M S Y  
Department of Chemical Engineering, Stanford University, 

Stanford, California 94305 

(Received 11 July 1978 and in revised form 2 October 1979) 

We consider the onset of Rayleigh-BBnard convection from random fluctuations 
arising within a fluid. In  the specific case in which the fluctuations are thermodynamic- 
ally determined, we reduce the problem to a random initial value problem for the 
Fourier modes. For the case of weak nonlinear convection, i t  is possible to truncate 
the number of modes and this truncated set is solved both by a Monte Carlo technique 
and by moment methods for various R]ayleigh numbers. We find three stages in the 
evolution of ordered convection from random fluctuations which correspond to time 
intervals in which the fluctuations and the nonlinearity have different degrees of 
importance. It is shown that no simple moment truncation method will succeed and 
that the time for onset of convection is a mean over a distribution of times for which 
members of an ensemble exhibit appreciable convective transport. 

1. Introduction 
Conventional hydrodynamic stability theory is concerned with the determination 

of critical values of parameters, such as the Rayleigh number or the Taylor number, 
demarking a region of stability from that of instability. For supercritical parameter 
values, the stationary solution becomes unstable to a different finite amplitude 
solution, which in some cases is sufficiently simple that it can be determined employing 
well-developed techniques of weak nonlinear stability theory. It is the subject 
of dynamic instability theory to study the manner in which the new finite 
amplitude solution evolves from ubiquitous disturbances in the fluid. Questions in 
the domain of such a transient instability theory include that of non-uniqueness of 
the new state, that is to say, which of the possible new states will be observed ? Other 
questions include that of a proper description of the transition time for evolution 
between states and the time a t  which disturbances become manifest, denoted as the 
onset time. In  its present stage of development, dynamic instability theory is incapable 
of providing satisfactory answers to some of these questions. 

The present work couches these questions in the context of a full statistical des- 
cription of the random nature of disturbances, which play an important role during 
the evolution of a transient system to a new stable state. Such statistical characteriza- 
tion of disturbances leads to new concepts in stability theory. By modelling random 
perturbations in the dynamic system as Gaussian white noise, Ludwig (1975) has 
shown that the deterministic concept of stability no longer applies. Even if the 
corresponding deterministic system has an asymptotically stable equilibrium point, 
there may be a finite probability that random effects will move the system out of the 
domain of attraction of the equilibrium point. I n  such a case, the.system will eventually 
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leave the domain of attraction with probability one. The deterministic concept of 
stability is then replaced by the expected time elapsed before leaving the domain of 
attraction. Ludwig refers to this time as the persistence of the system. 

The study of random convection problems is in its infancy, although there is ample 
theoretical and experimental evidence to motivate such studies. For example, Clever 
& Busse (1978) and Busse & Clever (1979) have demonstrated that simple concepts 
of the relative stability of one finite amplitude state with respect to another is in- 
sufficient to resolve the question of non-uniqueness. This is reflected for example, in 
the differences between the convection patterns observed in steady experiments when 
the initial disturbances are controlled (and therefore characterized) and when they 
are uncontrolled and presumably random (Busse & Whitehead 1974). Recent work in 
the study of convection in porous materials by Horne (1979) and Straus & Schubert 
(1979) has also indicated the existence of multiple steady solutions at a given Rayleigh 
number, with each solution stable relative to the others. 

There is even greater motivation for the study and characterization of random 
disturbances in the study of transitional flows which are linearly unstable, and in the 
stability of time-dependent flows. In  the case of base states which vary periodically 
in time, theory and experiment are in wide disagreement in some cases; see Davis 
(1976) for a recent review. It has been suggested on the basis of experimental data, 
that the presence of random noise may drive a system continuously away from its 
base state, even though conventional deterministic models would predict some degree 
of stability; see Finucane & Kelly (1976). The unsatisfactory status of theories of 
onset time for impulsively driven flows is unchanged since it was critically reviewed 
by Homsy (1973). Trajectories based upon a deterministic view show a marked 
sensitivity to initial data, which leads to an indeterminancy in the onset time; see for 
example Gresho & Sani (1971). More recently, in a study of convection in a rotating 
layer heated from below, Busse & Clever (1978) have suggested that the inclusion of 
random noise is necessary for the correct prediction of states of convection charac- 
terized by their relative roll orientations, all of which are continuously unstable to 
each other. Thus a consideration of the random nature of fluctuations has potential 
impact on many problems in stability theory. 

There has been recent interest in the theory of random convection problems. 
Newell, Lange & Aucoin (1970) treated the problem of the evolution of a random 
initial spectrum or bandwidth of modes. Assuming the initial distribution to be 
sufficiently close to Gaussian for cumulant truncation methods to apply, they were 
able to show that the roll structure which ultimately evolves is one of perfect order. 
Zaitsev & Shliomis (1971) showed that the usual critical point, R,, of linear instability 
theory is unaffected by the addition of random forcing, but that the forcing does lead 
to an imperfect bifurcation near the eigenvalue of linear theory. Later, Graham & 
Pleiner (1975) attempted to resolve the mathematical difficulties which occur in the 
randomly-forced problem in an extremely small region near R,. Graham (1  974) has 
shown that in a small neighbourhood of the critical point steady solutions to the 
randomly-forced problem may be represented by a generalized potential, and that 
this potential is extremized for rolls of perfect order with wavenumber equal to the 
critical wavenumber. These results thus complement those of Newell et al. (1970). 
Finally it is worth mentioning the intriguing and presently unexplained observations 
by Ahlers & Behringer (1978) that continuous, aperiodic and measurable fluctuations 



Randomty forced Rayteigh-Btnard convection 331 

occur in a convection apparatus of large aspect ratio as soon as the critical point is 
exceeded. There is thus ample motivation for the development of theoretical methods 
for solving random convection problems. 

It is the goal of the present work to develop such methods applied to the evolution 
of cellular convection. In an experimental system, statistically correlated disturbances 
may be present owing to vibration of the mechanical equipment attached to the 
system or due to imperfect control of the boundary data. In the absence of all disturb- 
ances of mechanical nature, thermodynamic fluctuations become responsible for 
triggering any instability. Since thermodynamic fluctuations are always present in 
any macroscopic system, the time evolution of the convection provides an upper 
bound to the transition time for the establishment of steady convection. In  order to 
demonstrate the analysis with as much mathematical simplicity as possible, we con- 
sider the following transient experiment. Let the initial state of the fluid be motionless 
with an adversely linear temperature profile and a hydrostatic pressure gradient so that 
the Rayleigh number of the system exceeds its critical value. (Although this system is 
potentially unstable and thus far from equilibrium, in order to describe the initial 
disturbances as equilibrium thermodynamic fluctuations we consider the initial state 
to be in pseudo-thermal equilibrium at some average temperature T.) Then any 
infinitesimally small disturbances present in the system amplify as the system evolves 
to a new stable solution. For weakly supercritical conditions this new solution consists 
of two-dimensional roll cells which are periodic in the horizontal direction (Schliiter, 
Lortz & Busse 1965). In  this paper we study the transient evolution of the system to 
these roll cells and evaluate the onset time for convection. In  $ 2  we develop the 
random-amplitude evolution equations, and specify the statistics of both the random 
forcing and the initial conditions. Section 3 contains certain results of linear theory 
which have a later use. In  $4 we separate the terms of different order for weakly 
supercritical conditions. Finite-amplitude steady solutions to lowest order are 
obtained from simultaneous consideration of the Fockker-Planck equations and the 
moment equations. With neglect of superimposed thermodynamic fluctuations, this 
steady state solution is identical to that of Malkus & Veronis (1958) to lowest order, 
with a probabilistic description of flow direction. Two different methods of obtaining 
the time dependent solution are outlined in $ 5 ,  namely a moment truncation method 
and a Monte Carlo simulation. It is shown that no simple moment truncation is 
uniformly valid in time. Three regimes of evolution are identified and discussed. 

2. Mathematical formulation 

(a)  Governing equations 

As we have stated, our interest is in convective states of motion which evolve from 
random forcing within the fluid. Much of the development which follows is valid for 
any fluctuations whose statistics are described by (2.2) below: however, in order to 
fix ideas, we follow several recent researchers in taking the fluctuations to be thermo- 
dynamic in nature. Restricting the fluctuations on this steady state to be of thermo- 
dynamic origin introduces thermodynamically determined fluctuating forces into the 
governing equations. These equations were introduced and analysed by Landau & 
Lifshitz (1959) and further discussed by Keizer (1978) and Fox & Uhlenbeck (1970). 
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Thus the dimensionless equations for the fluctuating quantities are 

B. Jhaveri and G .  M .  Horny 

Pr TS,, + Pr aui aui - 

at 1 axj axi 
-+u.- = - 

where R = g,8ATls/u~ and Pr = U / K ,  are, respectively the Rayleigh number and the 
Prandtl number. Here S ,  and qi are the random stress tensor and random heat-flux 
vector respectively. Correlations of the dimensionless random quantities are given as, 

(2.2) i 
(S , j (xp ,  ti) Slm(Xq, t 2 ) )  = 20J(xp -xq) &(ti - ' 2 )  (Sit ajm + 'im 'it), 

(qi(xp, t l )  ! I j ( X q ,  t 2 ) )  = 2 # W P  -xq) w 1 -  t 2 )  Sip 

{SijqJ = <Sii> = (41) = 0, 

where 0 = Pr3kT/pu21 and # = [kT"2gp/pcP 1i2AT] (Pr R ) .  As is well known, 0 $ # for 
most fluids, and so we neglect qi in what follows. Neglecting the fluctuations at  the 
boundary, the boundary conditions at  x3 = 0 , l  are, 

u3 = T = aul/ax3 = au2/ax3 = 0. (2.3) 

(b )  Fourier representation 

For a supercritical Rayleigh number R, as is well established by nonlinear stability 
theory (Schluter et al. 1965), convection sets in in a form of two-dimensional rolls with 
period 27r/a in horizontal direction. Since we want to describe the time evolution of 
this periodic solution from thermodynamic fluctuations to ordered convection, we 
restrict the analysis to two dimensions and represent dependent random variables as 
a double sum of Fourier components with period 2 n / a  in the x direction, 2 in the z, 
direction and random time-dependent Fourier amplitudes. For other boundary 
conditions, expansion in terms of eigenfunctions of the stationary Rayleigh-BBnard 
problem is possible: Zaitsev & Shliomis (1971). For free-free conditions, these eigen- 
modes are the harmonic functions exp (innz). Changing the notation from (xl,, x2, x3) 
to ( 2 ,  y, z )  and (ul, u2, u3) to (u, v, w), restricting to two dimensions ( x ,  z ) ,  and taking 
into consideration the continuity equation and the boundary conditions, the Fourier 
expansions of dependent variables take the forms 

c o r n  

a = l  n=l 
w = x 2 c,,(t) cos ( a a x )  sin (nm) ,  

0 3 0 3  

T = x C dan(t) cos (am)  sin (nm),  
a=O n=l  

(2-4) 

with associated expansions for u and p .  It may be noted that the temperature T 
defined by (2.5) includes a mean field independent of x. This represents the modification 
of the mean temperature distribution by convection. On the other hand, no mean 
wind is produced by the convection; therefore a + 0 in (2 .4 ) .  

Substituting (2 .4 ) ,  (2 .5 )  into ( 2 . 1 ) ,  using the orthogonality property of the spatial 
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functions in the fundamental region (0 < x 6 2n/a, 0 < z < 1)  and eliminating the 
pressure from the x and the z components of the momentum equations, we obtain, 
in the usual way, the equations for the time evolution of the random Fourier ampli- 
tudes, viz. 

a+b=c+ m-n=$- 

a+b=c- n-m=p- 

(2.7) 
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Only those components of wavenumbers (a ,  n, b, m), in the multiple summations 
above are considered which satisfy the selection rule written below the summation 
sign. Also the superscript sign is the sign of that  term when that particular selection 
rule is satisfied. For example, for c = 1 ,  p = 1 ,  a = 1, b = 2, n = 1 ,  m = 2, the first 
term in (2.6) becomes 

or 
- (4n3(a2+ 772)) C l l ( t )  c&). 

The random-forcing function fc,(t)  given by equation (2.9) is Gaussian, as is the 
random shear-stress tensor Sij to which i t  is linearly related. Integrating (2.9) by parts 
and using correlations for Sij from (2.2) and boundary conditions, we obtain the mean 
and correlations for the Gaussian forcing as, 

I 
(2.10) 

Having derived the random evolution equations (2.7)-(2.9) for the Fourier ampli- 
tudes with accompanying statistics of the forcing [see (2.10)] we need the initial 
statistics of these Fourier amplitudes in order to complete the mathematical formula- 
tion of the problem. We describe the initial state of the fluid as motionless and in 
pseudo-thermal equilibriumt a t  some average temperature, p. Next we consider the 
equations governing the time evolution of the Fourier amplitudes from some arbitrary 
instant for an isothermal, quiescent fluid layer, and then determine the steady state 
correlations among the Fourier amplitudes. Neglecting the nonlinear term in (2.6) for 
small fluctuations, the evolution equation for c,,(t), becomes: 

d 
- c,(t) = - Pr (c2a2+p2n2) ccp( t )  + fc3 , ( t ) .  
dt 

(2.11) 

Since this is a linear Ito stochastic differential equation, c,,(t) is a Gaussian process 
with vanishing mean. Denoting (c,,(t) cgh(t))  as Ecpgh(t)  and ( f c p ( t ) f g h ( t ) )  as 

2Dcpgh w 1 -  t z ) ,  

the equation for the second-order moment, Ecpgh(t) ,  may be readily written following 
Soong (1973), as, 

d 
Ecpgh = - Pr (czaz +p2n2) Ecpgh - Pr (g2a2 + h2n2) Eghcp + Dcpgh + Dghcp, (2.12) 

where 

Dcpgh = 8 - (c2012) s,, Jph. (2.13) (3 
The steady state solution, readily obtained from above is 

(2.14) 

t The concept of pseudo-thermal equilibrium implies that each infinitesimal horizontal fluid 
layer is insulated from the adjacent ones. 
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I n  summary, the Fourier amplitudes, ccp, are initially Gaussian distributed with 
vanishing mean and correlations given by (2.14) while the Fourier amplitudes, dcp, 
have trivial initial values. 

(c) Moment equations 

Since the random forces defined by equations (2.9-2.10) are &-correlated Gaussian 
processes, equations (2.6-2.8) constitute a system of quadratically nonlinear Ito 
stochastic differential equations (Soong 1973). Replacing the double subscripts (c, p )  
by a single subscript (i), these coupled equations can be written as: 

(2.15) 

where the random variables {Xl, X,, . . . , Xn} and the random forces {q, W,, . . . W,}, are 
respectively the Fourier amplitudes {ccp, dcp} and the random forces { f,}. Here we 
have truncated the infinitely coupled hierarchy to  just n equations. The value of the 
cutoff index n depends on the convergence criteria and is discussed later. The correla- 
tion among random forces from (2.10), in equivalent notation is then, 

Here Dij is a diagonal array obtained from (2. lo), and the aij and Qijk are inner-product 
arrays which are known. Denoting the nth-order moment (Xil Xi, . . . X i n ) ,  by Eiliz.. .in, 
the hierarchy of moment equations for system can readily be written following Soong, 
as : 

(2.17) 

Higher-order moment equations can easily be written by a way of generalization. 
We note that the nth-order moment equation contains moment terms of nth, (n+ 1)  
and (n- 2) order. That the moment equations are not closed is a general property 
of nonlinear random differential equations. 
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3. Linear analysis 
The linear instability theory for the random problem was solved exactly by Zaitsev 

& Shliomis (1971), who were able to show, among other things, that the critical point 
is that given by the solution to a standard eigenvalue problem, and that correlation 
lengths and relaxation times diverge like (R - Rc)-3 and (R - Rc)-l, respectively, as 
R approaches the critical point (Rc) .  It is useful to briefly develop these results in a 
more explicit form here, for use in later sections. 

The linear equations are 

(3.1) 
d - (ccp( t ) )  = - Pr (c2a2+p2n2)cCp(t) + Pr dt c2u2 + p2n2 

with initial conditions 

(3.4) 

and the correlation of random forces given by (2.10). Note that we denote (cmdgh) 

Since the equation for dop(t)  is uncoupled, homogeneous and with trivial initial 
condition, it has a trivial solution. Also the correlation of two Fourier amplitudes with 
different horizontal or vertical wavenumbers (c =l= g or p += h)  reduces to the trivial 
solution because of the ScgSp, dependence of initial conditions and random force 
correlations. Non-trivial second-order moment equations similar to (2.18) for the 
stochastic equations (2.20) and (2.21) are 

as Hcpgh* 

HCPCP + 2DCPCP, (3.7) 

c2a2 

d - (Ecpep) = - 2 Pr (c2a2+p2n2) Ecpcp + 2 Pr 
dt 

d 
- dt (Hcpcp 1 = REcpcp - (c2a2 + p2+) ( 1 + Pr)  HCp, + Pr ( c2a2 + p2T2) GcpCp, ( 3.8) 

d 
(3.9) 3 (Gcpcp)  = 2RHcpcp - 2(c2a2+ p2n21 Gcpcp, 

where, from (2.14) 

(3.10) 

(3.11) 
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and 

A,, = 

2 P r  c2a2 
- 2Pr (c2a2 +p2m2), 

c2a2 + p27F 
0 

the above equations can be written in matrix form as, 

with 
x:, = X,(t = 0) = [Ecp,(t = O),  0) O]T. 

(3.12) 

(3.13) 

(3.14) 

The solution of (3.13) with initial condition (3.14) can be written explicitly (Coddington 
& Levinson 1955) as 

X,(t) = e(Acpt) (X'& +A$ lc,) - A&1 l,, (3.15) 
where 

e(Acpt) = PetJP-1. (3.16) 

Here J is the Jordan-Canonical form for the matrix A, and P is the matrix of eigen- 
vectors such that AP = P J. Since all the eigenvalues of A, are distinct, matrix J has 
a simple diagonal representation 

A&) 0 0 

J = 0 A$ (3.17) 

( o  0 p,) 
where A$,  Aiz and Ah; are eigenvalues of the matrix A,, (cf. appendix for the eigenvalues 
and eigenvectors of the matrix Acp); eJt is then simply 

(3.18) 

Two of the eigenvalues Ah: and A$,' are always negative; however, A$ goes through 
zero for critical values of Rayleigh number, defined as R,(a) = (c2a2 +p27r2)3/c2a2. As 
is well known, the lowest value of R, for c = 1, p = 1 goes through a minimum valuc 
(R& = 27m4/4) for a* = 7r/J2. Thus for R < R,", all eigenvalues are negative ant1 
thermodynamic fluctuations relax to steady state values, i.e. 

lim X,,(t) = -A;; I,. 
t h W  

For R > RTl a t  least one eigenvalue is positive (for a range of a) and correlations 
grows exponentially in time. Eventually, the assumptions of linear theory become 
invalid and nonlinear terms have to be taken into account. 

4. Weak nonlinear theory 
( a )  Order analysis of nonlinear equations 

We restrict ourselves to weakly supercriticel conditions for which R > R& but 
R < R,,(a), c > 1 ,  p > 1 so that only A$;) > 0, Ai2 < 0 forc > 1 , p  > 1. The condition 
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A$ > 0 restricts the value of a to a small range near a,. The analysis that follows is for 
arbitrary but fixed wavenumber. For R close to Rf,, in the linear analysis, only the 
correlations (c,, cI1), (ell d,,), and (a,, all) grow exponentially with time while all 
other correlations remain of thermodynamic order. As correlations grow to O( 1)  the 
nonlinear terms also grow to O( 1 )  and have to be retained in the analysis. Consider the 
nonlinear stochastic modal equations (2.6)-(2.8). We see that only those Fourier 
amplitudes (ccp, dcp) ,  generated by nonlinear interaction of modes cll, d,, grow to O(1) 
when ( c+p)  is even, because of the particular nature of selection rule generating 
them. For example, generation of the mean term do, in (2.8) results from the direct 
interaction of cI1 and all. Higher-order interaction generates terms like c13, d,, from 
c,, and dn2. We thus separate the nonlinear equations for the evolution of Fourier 
amplitudes into two parts; those which evolve to O( i )  (c + p  even), and those which 
stay of thermodynamic order (i.e. of order O), (c + p  odd). We first consider those modes 
which grow to O( 1).  

Since the number of terms generated by nonlinear interaction of c,, and d,, rapidly 
inflates, we restrict the analysis to the lowest non-trivial nonlinear interaction, viz. 
the generation of mean term dn2. This may be justified in the usual way using per- 
turbation theory about R = R, (Malkus & Veronis 1958). Denoting the Fourier 
amplitudes (cI1, all, dn2) as random variables (XI, X,, X 3 )  and the random force f i l ( t )  
asf,(t), the nonlinear stochastic equations may be written as, 

where 

-- - a,, XI + a12 xz +fl(t), dX1 
at 

( 4 . 1 ~ )  

Pr a2 
a +7P' a,, = -Pr ( a 2 + m 2 ) ,  a12 = a21 = R, I 

(b) The associated Fockker-Planck equation and the steady solution 

We consider the hierarchy of moment equations for the stochastic system (4.1) and the 
associated Fockker-Planck equation for the probability density function f (x,, x2, x3, t )  
(Soong 1973): 

An important property of the moments of the solution can be derived using symmetry 
of the Fockker-Planck equation. It can be easily verified that the Fockker-Planck 
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equation is invariant under the transformation (xl, x2, x3) -+ ( - xl, - x2, x3), implying, 

(4.4) f (Xl, x2, x3) = f( -x1, - 2 2 ,  x3). 

Next consider the moments (X$Kl)XiKz)X&Ks)) where K,, K2, and K3 are integers. 

x1 K K K  1x2 2x3 ~ f ( x ~ , x ~ , x ~ ) d x ~ d x ~ d x ~ .  (4.5) s:wsm-ms:m (X$"I) XPa)  X p d )  = 

Using the invariance properly (4.4) it is possible to show that 

X F  X F Z  $3 f (Xl, x2, x3) ax, ax2 ax3. 

(4.6) 
Sloms:Smm ( X $ ~ i ) X i ~ a ) X & ~ d )  = 2(( - 1)(Kl+Ka)+ I} 

Hence 

(X$"l) XiK,) XhKs)) = 0,  (K, + K2) = odd integer. 

Using this property, denoting ( X i  Xi x k  . . . X,)  as Eijk,.,,, we write the hierarchy of 
moment equations for the non-trivial moments, from (2.17)-(2.19) 

-- '2' - u21 Ell + (all + a22) El, + %2 E22 + Q213 E 1 1 3 7  

dE,, at = 2a22 E22 + 2u21 
d + 2&213 E123, 8 E33 = 2a33 E33+ 2Q312 E123, 

d 
% E113 = (2all + a33) + 2u12 + Q3I2 $- 2Dll E33 

d 
8 = (all f u22 + a33) + a12 E223 + u21 '113 + Q213 E1133 + Q312 

d 
8 E223 = (2a22 + u33) E223 + 2a21 + 2Q,13 + Q312 E1222, 

d 
% E333 = 3a33 E333 + 3Q312 E1233, 

1 

I 

' (4.7) 

with higher-order moment equations written in a similar fashion. 
As t+co, the moments grow to O(1) and terms multiplied by D,, in (4.7) become 

negligible. Time independent solutions, if they exist, can thus be found by setting 
d/dt and D,, to zero and solving the resulting set of infinite coupled algebraic moment 
equations. However the moment equations are equivalent to the Fockker-Planck 
equation, and another alternative is to solve for the steady probability density 
function f,(z,, x2, xg) from (4.3) without the D,, term. Instead of trying to solve the 
partial differential equation for f,, we construct the steady probability distribution 
function as follows. Since the importance of random forcing vanishes a t  larger times, 
we can set the term f,(t) to  zero in equation (4.1). Then the randomness enters into the 
equation through virtual initial conditions and each sample trajectory evolves and 
stabilizes deterministically. Then to obtain the steady state distribution function for 
the random vector X,(t = co), we can set the time derivative ( d l d t )  to zero in equation 
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(4.1). This reduces equation (4.1) to algebraic equations, whose solution can be 
writ,ten in a straightforward manner for the stationary random variables 
(X,,, X,, X3,) 

X,, takes the value k /3 each with probability 8; X,, is linearly reIated to Xis; X,, 
is statistically independent of XI, and X,,, and takes the value y with probability 1. 
Or in an equivalent form, 

fs(% x2, x3) = {@(% - PI S(x ,  + a,, Pl.12, + 4m,+ P )  a(% - a,, Pla,,)) 4 x 3  - 7). 
(4.9) 

Next we calculate the steady moments (X\$)X@)XhS3)). 

Hence 

= 0, otherwise. (4.10) 

The steady solution so obtained is identical to  the deterministic two-dimensional roll 
cell solution of Malkus & Veronis (1958) to lowest order. Superimposed on this finite 
amplitude roll cell are thermodynamic fluctuations which we had described previously 
in terms of Fourier amplitudes (c,,, dcp) ,  (c +p)  odd. One can solve for these amplitudes 
in order to correctly represent the effect of thermodynamic fluctuations on roll cells; 
however, we do not do so here since our main interest is to show the growth of observ- 
able motion from thermodynamic fluctuations. 

5. Time evolution 
As mentioned earlier, in the time-dependent solution process, we are looking for the 

evolution of statistical mean value properties of the ensemble; one of the most im- 
portant of these is the heat transport, (Nu(t)) .  It can be easily shown that, 

(5.1) 
277 
R 

(Nu ( t ) )  = 1 -- E3(t ) .  

The time-dependent moment properties may be calculated from the probability 
density function f(xl, x2, x3, t ) ,  if one can solve the Fockker-Planck equation (4.3). 
For small supercriticality, the non-linearity is expressible as a gradient field and the 
steady state solution of a Fockker-Planck equation such as (4.3) is represented in 
terms of a potential (Ludwig 1975; Graham 1974). Then the time-dependent solution 
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for the probability density function can be obtained in an approximate way by an 
asymptotic ray method developed by Ludwig (1975). Since our interest here is to  
develop a numerical method for solutions at  high Rayleigh numbers, we do not 
utilize such analytical techniques in what follows. 

I n  order to obtain the time-dependent moment solution, one has to integrate the 
infinite hierarchy of moment equations from their initial values. However, some 
closure approximation is necessary to truncate this hierarchy. We discuss this closure 
problem below. A second alternative is to  simulate a large number of realizations, 

{ 4 t ) , x ; ( t ) ,  ..*, .?It)}, 

approximating the ensemble of the random evolution X i ( t ) ;  and then to calculate the 
moments from this approximate ensemble. We follow this second alternative and 
generate the approximate ensemble by a Monte Carlo simulation. With this simulation, 
we can also study the evolution of individual realizations. 

The white-noise component f l ( t )  in (4.1) may be formally written as a derivative, 
dB(t)/dt, where B(t) is the Weiner process or the Brownian motion process, Gaussian 
distributed with statistics: 

(Soong 1973). Following Chandrasekhar (1943), we then integrate (4.1) for small 
(tz - t l )  as 

The integral appearing in (5.3) is deterministic, while the increment due to  the random 
forcing is included in the term Bi(t,) - B,(tl). The increment Bi(tz) - Bi(tl) is then 
Gaussian distributed with statistics 

where h is the integration step size. A Monte Carlo simulation for the solution process 
X,( t )  then consists of following steps. First we generate N vectors{xt(O), xt(O), .. . , $(O)> 
as the realizable initial values for x,(O). They are Gaussian distributed with mean and 
variance specified in fj B 2  and are generated numerically using a polar method of 
pseudo-random number generation (Knuth 1969). For each time step, these realiza- 
tions are first deterministically integrated using standard initial value techniques. 
Next, N realizations for the random increment B,(t2) - B, ( t l ) ,  Gaussian distributed 
with statistics (5.4), are generated using the same method of pseudo-random number 
generation. They are added to the deterministic increment to complete the step 
integration. Integrating all realizations until they reach a steady state completes the 
simulation. 

For the numerical calculations we use the following values for the parameters R, 
Pr, 0 and a. We choose Pr = 7, as being typical for liquids. Since (kF/pv21)  = 

for 1 z 0-1 em, 8 = Pr3 x = 3.43 x 10-7. For small R - R,, convection sets in with 
01 close to a* = n/ J2.  Graham (1974) has considered the problem with weak random 
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FIGURE 1. A few typical realizations, z:(t), from the Monte Carlo 
simulation. The conditions are given in the text. 

perturbations in (&-a*), and has shown that the roll that evolves has a = a*. Thus 
we study the evolution for this critical value of wavenumber. Then 

Rll(a*) = R& = 27n4/4,  

R,,(a*) = 27R&, R,,(a*) = 2R3, and R,,(a*) = 16RZ. As mentioned above, the value 
of R is therefore restricted to R& < R < 2R3. 

The choice of N as the number of reaIizations necessary to generate a reasonably 
good distribution for x i ( t ) ,  is rather intricate. Consider a random variable distributed 
with mean and variance p and u2 respectively. If one generates N sample realizations 
for this random variable, then the mean calculated from these samples is distributed 
with variance v 2 / N .  Hence the error involved in approximating the sample mean as 
the ensemble mean is of order c+/JN. For a Gaussian random variable with zero mean 
and variance v2, (x4) - (x , }  = 20-4. The variance r& of N independent realizations of 
x ,  is then distributed with variance 2 d ' l N .  We found that for N = 30, the error 
involved in assuming r& = a2 is ( 2 / 3 0 ) b 2 ;  roughly 7 yo. That is to say that the sample 
variance vk may be somewhere between 0 . 9 3 ~ ~  to 1-07v2, with probability concen- 
trated near v2. This is the minimum value of N we have used during simulation; 
however some simulations were generated using N as large as 200. 

The first component of the vector x i ( t )  represents the amplitude of the convective 
flow. We plot few typical realizations for x i ( t )  for the case R = 1*5R* in figure 1 .  For 
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good resolution, two different scales are used for the vertical axis. The vertical axis 
in the right-hand side of the figure is scaled linearly and corresponds to the evolution 
a t  larger times. The vertical axis on the left-hand side of the figure is scaled logarith- 
mically and corresponds to the evolution at smaller times. Curves 1 and 2 are two 
extremes of observed trajectories stabilizing to roll cells with a negative flow direction. 
Curve 3 represents an intermediate case. Similarly curves 4, 5, and 6 are respectively 
two extremes and an intermediate sample stabilizing to roll cells with positive flow 
direction. In view of the vanishing mean of the random forcing, half of the realizations 
should stabilize to roll cells with positive flow direction and the other half to negative 
flow direction. Owing to inherent errors in the Monte Carlo simulation, this dis- 
tribution was found to be close to that expected with 14 realizations stabilizing to 
positive flow direction and 16 to negative. 

Three distinct stages during evolution are apparent. There is an initial stage wherein 
realizations are of the same order as the forcing, which has a substantial influence in 
deciding the fate of any given sample a t  later times. For instance, sample 1 stays for 
a minimum time under the influence of forcing and thus represents the fastest evolving 
realization. Sample 2 on the contrary stays under the influence of forcing for a long 
interval and thus evolves slowest of all. It also has a positive initial velocitj but 
stabilizes to a roll cell with negative flow direction. Once the realizations leave the 
influence of forcing, their trajectory is decided. Thus follows an intermediate state 
during which realizations evolve in a deterministic fashion without any significant 
influence due to forcing. However, nonlinear interactions are negligible during this 
stage as evidenced by exponential growth of realizations and also by Nusselt numbers 
which remains unity during this stage. At the end of this second stage, realizations 
have grown to such a magnitude that nonlinear interactions become substantial. 
Realizations then enter the final stage of evolution wherein nonlinear effects dominate 
and modify the growth of realization till they reach a steady state. 

Such different regions of growth appear in previous studies of nonlinear Brownian 
motion (Suzuki 1978). Suzuki has considered one nonlinear stochastic equation of the 
form 

dx/dt  = ux - b X 2  + ~ f ( t ) .  (5 .5 )  

For a small strength of forcing E <I 1,  the method of multiple scales may then be 
utilized to construct an analytical solution. He has formulated this method in terms 
of a scaling theory of transient nonlinear fluctuations. However, extension of his 
theory to the case of high R is impossible: we use the agreement between our numerical 
results and the general qualitative features of the evolution of a single randomly- 
forced mode to establish some confidence in our simulation scheme. 

The time evolution of the heat transport for each of the samples as well as the mean 
is of interest, as it gives one of the primary measurable quantities. This is shown in 
figure 2, where we plot the Nusselt number for each of the realizations as well as their 
mean. The conditions and samples are identical to those of figure 1 .  Two features are 
immediately apparent from the figure. The first is that different cells begin to convect 
at  different times, and so there is a distribution of times a t  which the members of the 
population reach a given convective strength. The mean over this distribution gives 
the transition time. The second feature of the results is that the mean does not follow 
the same trajectory as the individual samples. This is a result of the fact that in the 
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t 

FIGURE 2. Nusselt number m. time for the realizations of 
figure 1 (-) and the mean (- - - * ) . 

nonlinear regime, the probability density contribution is evolving from Gaussian to 
its steady form given by (4.9). Interestingly, as we will show below, the mean con- 
vective transport Nu(t)  does not follow a deterministic trajectory, although each of 
the samples does. 

We now return to  the method of moment truncation. The infinite hierarchy of 
moment equations (4.7) may be closed by making some approximation. Schemes 
range from simply dropping the higher order moments a t  a certain truncation point 
to approximating them in terms of lower-order moments in some optimal way. At 
steady state this functional dependence of higher-order moments may be established 
from (4.10) a t  third order, wiz. 

E113 = Ell E3, = E3’ (5.6) 

The advantage of using this truncation is that  the solution will evolve to correct steady 
state values. The first five of equations (4.7), together with the closure hypothesis 
(5.6), form a closed system of moment equations. We plot ( N u ( t ) )  from these moment 
quations for three different values of Rayleigh number in figure 3, i.e. for R = 1*3R,, 
1.5Rc, and 1-8Rc. In the same figure we plot the evolutions from the Monte Carlo 
simulation. At small times, when nonlinearities are unimportant, the truncation scheme 
does not affect the evolution and the solution obtained from moment truncation 
matches with that obtained from Monte Carlo simulation. However, in the nonlinear 
regime, we see that the magnitude predicted by the moment truncation method is 
overestimated. To understand this, we study the evolution of El13/E,, E3 and 
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FIGURE 4. The moment ratios Ell, /Ell  E ,  and E,,,/E,,, E ,  from the Monte Carlo simulations. 
-, N = 200, h = 0.005; ---- , N z 100, h = 0.01; y.-. , N = 100, h = 0.005. 

ElZ3/E, ,E3 as determined from the Monte Carlo method; refer to figure 4 .  These 
ratios, which are taken as 1 from the moment truncation, in fact evolve from a value 
close to 3,  to 1 during evolution. 

The functional dependence of the third-order moment at small times may be 
established as follows. During the intermediate region, both random forcing and 
nonlinear effects have negligible influence. Then the terms fi(t) and QZl3 x1 x3 may be 
neglected in (4 .1 )  and thus ( 4 . 1 ~ )  may be uncoupled from (4.1 a, b ) .  Setting xl,, be the 
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value for x1 at any origin of time to, in the second stage, the solution for (4.1) may be 
written as:? 

where k,, k,, and k3 are constants. Then 

However xl0 is Gaussian distributed and hence, {x~o)/(x~o)2 = 3, a property of a 
Gaussian random variable with vanishing mean. Similarly one can show that, 

It is quite apparent that the functional dependence (5.6) is not valid at small times. 
The manner in which these ratios evolve from 3 a t  small times to  1 at large times is the 
essence of the closure problem. Thus there is no simple closure, in which higher-order 
moments are represented as algebraic functions of lower-order ones, valid throughout 
the time evolution. 

6. Conclusions 
We have treated the evolution of Rayleigh-BBnard convection by considering the 

random thermodynamic fluctuations to  be the driving mechanism for the onset of 
convection. By the development of a Monte Carlo simulation technique, we have been 
able to construct the statistics of the evolution from a finite population of realizations. 
We find three basic stages in the evolution process which reflect the time regions in 
which (i) forcing is important, (ii) forcing is unimportant and each realization grows 
exponentially (iii) nonlinearities lead to steady convection. These three regimes, 
determined by Monte Carlo calculations, have many features in common with results 
available for simple model equations such as ( 5 . 5 ) .  Furthermore we have shown that 
there is no algebraic closure to the moment equations which is uniformly valid in time. 
Thus, accurate theory for randomly-forced instability problems of more complexity, 
e.g. high-Rayleigh-number convection, three-dimensional convection, or instabilities 
of time-dependent states will require considerable computation. 

We wish to point out two interesting features of randomly-forced instability 
problems which are absent in a deterministic description. The first relates to the 
evolution of a large population of convection cells which would be present, for example, 
in containers of large aspect ratio. Consider the evolutions shown in figure 2. After 
the initial period, each realization evolves in a deterministic manner, given by solutions 
to the so-called amplitude equations of nonlinear stability theory. However, since all 
realizations are not equally probable, and the probability density function also 

t Equations (5.7) also contains another term proportional to eAzt, where A, is a second eigen- 
value of matrix aii in (4 .1) .  However, A, < 0 while A, > 0, and eAztmay be neglected in comparison 
during the intermediate stage. 
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evolves in time, the mean observable transport evolves in a manner distinct from the 
deterministic solution; refer to  figure 2. Thus in experiments with containers of large 
aspect ratio, multiple experiments will give the same mean evolution, and this should 
differ from that predicted deterministically. 

The second point relates to the onset time for observable convection. Again, with 
reference to figure 2, i t  is clear that  since different realizations begin to convect a t  
different times, the ‘onset time’ may be described in a statistical sense as follows. 
Since all realizations do not have equal probability of occurrence, one may define the 
probability density p ( t ;  Nu*) that  a t  a given time, t ,  the transport rate for a realization 
is equal to Nu*. The most probable time of observable convection is therefore the 
mean over this distribution. We will apply these ideas in a later paper dealing with the 
onset time of convection in fluid layers heated in a time-dependent manner. 
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Appendix. Eigenvalues and eigenvectors A, 

equation 
Setting det (A,  -A, I) = 0 where I is the unit matrix, we get the characteristic 

+““C““(l+&)] Pr x ( A c p + ( c 8 , 2 + p e , z )  

The three eigenvalues are, 

2 4R +- 

Then the matrix of eigenvectors has the form, 

1 

A&) - a,, A;: -a,, 

a12  a12 

a32 (all- a32 (all- 

a,, (a33 - a,, ( a 3 3  - hi;)) 
where aij is the ij component of matrix Ac2). 
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